./dev |
Original theme by orderedlist (CC-BY-SA)
Where applicable, all content is licensed under a CC-BY-SA.
|
For input space $\Omega$ and output space $G$, a random variable is a function that, for each "event" $\omega \in \Omega$, assigns a probability and value $g(\omega) \in G$:
$$ X = g(\omega) \text{, with probability } p _ { \omega } $$
$$ H(p) = - \sum_{x} p(x) \lg p(x) $$
$$ H(X | Y) = \sum _ {x,y} p(x,y) \lg \left( \frac{p(x,y)}{p(x)} \right) $$
$$ \begin{array}{ll} I(X;Y) & = H(X) - H(X | Y) \\ & = D _ {KL} \left[ \ p(x , y) \ || \ p(x) \cdot p(y) \ \right] \\ & = D _ {KL} \left[ \ p(x | y) \ || \ p(x) \ \right] \\ & = D _ {KL} \left[ \ p(y | x) \ || \ p(y) \ \right] \\ \end{array} $$
$$ \begin{array}{ll} E [ f ( X ) ] = \sum _ { k } p _ k f( x _ k ) \end{array} $$
$$ H(p,q) = - \sum_{x} p(x) \lg q(x) $$
$$ \begin{array}{ll} D_{KL} (p || q) & = - \sum_{k} p(x) \lg \frac{q(x)}{p(x)} \\ & = - \left( \sum_{x} p(x) \lg q(x) - p(x) \lg p(x) \right) \end{array} $$
The term is ambiguous, so there are a few definitions and interpretations.
$$ \begin{array}{ll} \Pr{ N = n } & = \frac{\mu^n}{n!} e^{-\mu} \end{array} $$
$$ \to \mu = E[ N ] $$
$$ \begin{array}{ll} \Pr{ N(a,b] = n } & = \frac{[\mu(b-a)]^n}{n!} e^{-\mu(b-a)} \ \Pr{ N(a _ i ,b _ i ] = n _ i, i \in [0,k) } & = \prod _ {i=0}^{k-1} \frac{[\mu(b _ i -a _ i )]^{n _ i}}{n _ i !} e^{-\mu(b _ i - a _ i)} \end{array} $$
Where $a _ i < b _ i \le a _ {i+1}$.
$B \subset \mathbb{R}^d$ and $B _ i \subset \mathbb{R}^d$, $\forall i,j, B _ i \cap B _ j = \emptyset$
$$ \begin{array}{ll} \Pr{ N(B) = n } & = \frac{ (\mu |B|)^n}{n!} e^{-\mu |B|} \ \Pr{ N(B_i) = n_i, i \in [0,k) } & = \prod _ {i=0} ^ {k-1} \frac{ (\mu |B_i|)^n_i}{n _ i!} e^{-\mu |B_i|} \ \end{array} $$
$$ \begin{array}{ll} \Pr{ N(t) = n } & = \frac{(\mu t)^n}{n!} e^{-\mu t} \end{array} $$
$$ \to E[ N(t) ] = \mu t $$
todo